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Testing for Scaling in Natural Forms and Observables 
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The general procedure of calculating fractal dimensions or other exponents is 
based on estimating some quantity as a function of scale and on assessing 
whether or not this function is a power law. This power law manifests itself in 
a log (quantity) versus log (scale) plot as a linear region (scaling). It has thus 
become the practice to estimate dimensions by the slope of some linear region 
in those log-log plots. When we are dealing with exact fractals (the Koch curve, 
for example) there are no problems. When, however, we are working with 
natural forms or observables, problems begin to emerge. In such cases the 
scaling region is subjectively estimated and often is only the result of the generic 
property of the quantity to increase monotonically or decrease monotonically as 
the scale goes to zero irrespective of the geometry of the object. Here we discuss 
these issues and suggest a procedure to deal with them. 
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1. INTRODUCTION 

Frac ta l  objects ,  t~ un l ike  Euc l idean  objects ,  possess no  charac te r i s t i c  sizes 
o r  l eng th  scales. T h e y  have  detai ls  on  all l eng th  scales and  as such each  

small  p o r t i o n  when  magni f ied  r ep roduces  a large por t ion .  Th is  p r o p e r t y  is 

cal led self-s imilar i ty  o r  scal ing (scale invar iance )  and  is c losely connec ted  

to the  in tu i t ive  n o t i o n  o f  d imens ion .  Ma thema t i ca l l y ,  scal ing is expressed 
by a p o w e r  law of  the fo rm C(e) oc e +-A ( the sign depends  on  the statistic),  

where  e represents  the scale, C(e) is a statistic ob ta ined  at scale e, and A is 

re la ted to  the fractal  d imens ion ,  D,  which  assumes  n o n i n t e g e r  values.  F r ac -  
tals can  be exac t  o r  r a n d o m .  Exac t  fractals  a re  p r o d u c e d  by m a t h e m a t i c a l  
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equations (for example, chaotic attractors of dynamical systems) or recur- 
sive algorithms (for example, the Koch curve, the Sierpinski carpet, etc.). 
Exact fractals possess exact self-similarity (i. e., when a small portion is 
magnified it reproduces exactly a larger portion). Random fractals are 
products of recursive algorithms plus noise and do not possess exact self- 
similarity. When a small part is magnified it may not reproduce exactly a 
larger part, but it reproduces the statistical properties of a larger part. In 
this case we have that ( ( C ) )  oc e-+A, where the brackets indicate averages. 
In both cases scaling extends to infinitely smaller scales. 

In cases where the scaling is not uniform (i.e., when shapes are statisti- 
cally invariant under transformations that scale different coordinates by 
different amounts), then we do not have self-similarity by self-affinity. This 
type of scaling often appears in time series. Mathematically this is 
expressed by Ax(2At)  = a 2 n d x ( A t )  for all 2.>0, where x(t) is the time 
series and the symbol = d denotes identity in statistical distributions. This 
relation dictates that the distribution of increments of x over some time 
scale 2 At is identical to the distribution of increments of x over a lag equal 
to At multiplied by 2". Therefore, if time is magnified by a factor 2, the x 
is magnified by a different factor 2 "  ( 0 < H <  1). The quantity H charac- 
terizes self-affinity in a similar way to that in which D characterizes self- 
similarity. The values of H =  0.5 corresponds to the trace of a Brownian 
motion, whereas any value of H q: 0.5 defines a fractional Brownian motion 
(IBm) that displays infinite long-run correlations (either positive for 
H > 0 . 5  or negative for H<0.5) .  Because of the above formulations the 
general procedure of calculating the fractal dimension or other exponents 
is based on estimating some quantity C as a function of scale ~ and on 
assessing whether or not this function is a power law. This power law 
manifests itself in a log C(~) vs. log e plot as a linear region (scaling). 

When we are dealing with exact fractals (the Koch curve, for example) 
or with computer-generated random fractals (Brownian motions, coast- 
lines, etc.), there are no problems. The log-log plots are very linear (on the 
average in the case of random fractals) and we always recover an expected 
and a priori known result. When, however, we are working with objects or 
observables from nature whose properties are not a priori known, problems 
begin to emerge. In such cases scaling is assumed and the scaling region is 
subjectively estimated and often is only the result of the generic property 
of the quantity to increase monotonically or decrease monotonically as the 
scale goes to zero irrespective of the geometry of the object. 

For example, if C(e) is the number of boxes of size e needed to cover 
the object, then C(e) increases as e decreases regardless of the geometry of 
the object. This problem is further accentuated by the fact that strictly 
speaking exponents related to scaling are meaningful only for e --* 0, which 
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in applications is either overlooked or limited by data quality and sample 
size. For  that reason the statistical significance of  scaling itself has to be 
tested before it can be attributed to a self-similar or  self-affine fractal set. 
This issue has never been considered in studies establishing the fractal or  
chaotic character of  natural objects and observables. As we will see next, 
this is not  a trivial problem; certain admissions have to be made, and more 
work is needed in order to design a general procedure to test for scaling. 

2. TESTING FOR SELF-SIMILARITY 

Let us consider the case of  the coast of Great  Britain. It has been 
suggested t2"3) that coastlines are random fractals with their length L as 
measured with a yardstick of  size r, L(r), scaling according to L(r) oc r ~-D, 
where D for the coast of  Great  Britain is ~ 1.25. We considered the 
coastline with a resolution of  1 km and we applied box counting. Accor- 
dingly, Fig. 1 shows the logarithm of number  of  squares of  size r, N(r), that 
include a piece of the coastline as a function of  the logarithm of r. The least- 
squares fit over 0 < log r < 2.5 gives a slope (an estimate of  D) of about  
-1 .24 ,  in accordance with the previously claimed value. At this point we 
can claim that the coastline of  Great  Britain is fractal with a dimension of  
1.24. However, all we did was to assume that log N(r) is a linear function 
of  log r over the above range of  scales and to subsequently estimate the 
least squares slope. Thus we assumed fractality or self-similarity before we 
are able to prove it. What  we should have first asked is whether or not a 
linear model provides the best fit for the data in Fig. 1. 

Figure 2 shows d l o g  N(r) /d log  r as a function of  log r. We choose to 
show the first derivative because it is equal to the dimension D, 

N(r)  = Ar - n  ~ log N(r) = log A - D log r ~ d log N(r) /d  log r = - D  

In such a figure scaling manifests itself as a plateau (zero slope). We observe 
the following: (1) At very small scales the data points tend to minus one. (2) 
At very large scales the data tend to a value of  minus two. Those two 
features are artifacts of the algorithms, used to estimate dimensions and can 
be explained fully. Due to limits in the resolution as r approaches the resolu- 
tion of  the data, the coastline becomes more and more linear and thus 
D --* I. For  large r most  if not  all of  the squares used in the boxcounting 
have a high chance to include a piece of  the coastline and thus D --* 2. Due 
to those artifacts if the structure is scaling, a plateau will be observed in 
between very small and very large scales. In our  case we do not observe 
(visually) a clear plateau, as the data  show a slight trend over the whole 
range of scales. It is thus imperative to use statistical tests before a scaling 
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Fig. I. Log-log plot of the number of squares of sizes r, N(r), that contain a piece of the 
coast of Great Britain as a function of the size r. The straight line is a least squares fit with 
slope -1.24 over the indicated range of scales. 
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Fig. 2. The first derivative of the function in Fig. 1 [dlog N(r)/dlog i'] versus log r. Since the 
derivative provides to the fractal dimension, plateaus in such figures indicate scaling (see text 
for details). 
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region (a region over which the data in Fig. 2 have a slope which is not 
statistically significantly different than zero) is accepted. Note that the 
above-described artifacts are also present in figures such as Fig. 1, but due 
to the compression properties of the logarithmic function they are "sup- 
pressed." Therefore, one must question the validity of fitting a straight line 
over the whole range of scales in such figures. We thus are faced with the 
question as to what is the appropriate procedure to establish scaling. Here 
is where the problem becomes nontrivial. The scaling region is a function 
of the sample size. The larger the size, the wider the region. For a given set 
and sample size the width and location of the scaling region (if there is 
one) are not known a priori. We thus cannot consider a certain range of 
scales between very small and very large scales and test whether the points 
in that range exhibit a slope that is not statistically significantly different 
than zero. One could assume a sliding "window" of a varying width 
A log(r) and test whether or not over the included range of scales in that 
window the slope is not significantly different than zero. This process 
requires enough points to ensure accurate statistics. This is not a problem, 
as the box-counting operation can be repeated several times, each time 
starting with a different size square. The problems, however, with this 
approach are that often (1) zero slopes result from highly nonlinear func- 
tions and (2) nonzero slopes may result from points belonging to a scaling 
random fractal structure (see below for examples). 

Next we propose a way to test for "alleged" scaling that is devoid of 
such problems. The philosophy behind it is as follows: In order to decide 
that the data points in Fig. 2 are a manifestation of scaling and not the 
result of a random nonfractal structure, we should test the hypothesis that 
the data in Fig. 2 come from a population of random fractal boundaries with 
an average D = 1.24 over the same range of scales. In order to do this, it 
is necessary to have a model that generates such fractal boundaries. In the 
case of coastlines several algorithms can be employed to produce boundaries 
with a desired dimension. We employed the successive random midpoint 
displacement technique (4) in order to generate 10,000 random fractal 
boundaries with the same number of points as the Great Britain data, 
which on the average have a dimension equal to 1.24. The results are sum- 
marized in Fig. 3. The dots correspond to the data from the coastline of 
Great Britain (from Fig. 2). For each simulation and for a given r we have 
a D. Thus, from the 10,000 simulations we can estimate ~tverage D, 
standard deviation, and frequency distribution of D. The solid line is the 
average D as a function of log r. The bounds indicate the 5%-95% interval 
of the frequency distribution of D. As in Fig. 2, we observe the following 
artifacts: (1) The bounds are narrower for small scales, and (2) the solid 
line is rather fiat, showing a plateau at - 1 .24  for the range of scales 
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Fig. 3. Same as Fig. 2, but showing the results from 10,000 simulations of random fractal 
coastlines having an average dimension of 1.24. The solid line indicates the average dimension 
as a function of log r and the shaded area shows the bounds of the 5 % - 95 % limits of the 
observed frequency distribution of D as a function of log r. The dots are as in Fig. 2 (see Fig. 2 
for details). 

Fig. 4. Same as Fig. 3, but for I0,000 simulations of random fractal coastlines having an 
average dimension of 1.14. 
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0 . 3 < I o g r < 1 . 5  (as would be expected from a random fractal with 
D = 1.24); it tends to smaller values for log r < 0.3 and to greater values for 
log r >  1.5. As before, those features are expected and can be fully 
explained. Due to limits in resolution, as r approaches the resolution of the 
data, the structure becomes more and more linear anf thus D--* 1. For 
large r most if not all of the squares used in the box-counting algorithm 
have a high chance to include a piece of the coastline and thus D ~ 2. This 
also results in unreliable statistics and consequently the bounds are wider 
for larger scales than for smaller scales where the statistics are much more 
reliable. 

From Fig. 3, for a resolution of about 1 km we have thus established 
the features of scaling of random fractal boundaries with an average dimen- 
sion of 1.24. These bounds can now be used as the population against 
which the Great  Britain data (black dots) can be compared. Everything 
outside those limits will indicate departure from the model with D = 1.24. 
Apparently, only the points corresponding to larger scales (log r > 1.0) can 
be considered as significant at a 95% confidence level. Therefore a D = 1.24 
is not appropriate. A D = 1.14 (Fig. 4) appears to be the most appropriate 
model, but again it does not explain the small scales, which still deviate 
from the model. It may be that scaling breaks at very small scales, 
indicating different mechanisms at larger and smaller scales, which by itself 
could be a very significant result. Note that (for D =  1.14), even though 
over intermediate scales the black dots exhibit no obvious plateau they 
nevertheless fall within the 5 % - 9 5 %  limits of the distribution and there- 
fore are consistent with a scaling model of D = 1.14 

Alternatively, it may be that Fig. 1 exhibits two scaling regimes, one 
for smaller scales and one for larger scales. In this case, however, we were 
not able to produce a bidimensional model that will include all the black 
dots. If none of the above procedures is conclusive, it may very well be that 
the log N(r) is a nonlinear function of log r. This could be an indication 
either that there is no scaling or we are faced with a new type of scaling 
far more complicated than simple scaling. For simplicity we will call this 
"nonlinear" scaling. 

3. T E S T I N G  FOR S E L F - A F F I N I T Y  

Next we "proceed with testing for self-affinity in sequences. Our 
example involves DNA sequences. DNA sequences are strings of the bases 
(nucleotides) A, T, C, G. Bases C and T are pyrimidines, and bases A and 
G are purines. For each sequence a DNA walk may be defined as follows: 
Starting with the first base, the walker steps to the right if the base is a 
pyrimidine and to the left if it is a purine. It has been suggested and 
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debated ~5-7) that such walks correspond to traces that display scaling 
properties appropriate to fBms for intron-containing sequences (noncoding 
sequences) or to pure random walks for intronless sequences (coding 
sequences). 

In one-dimensional random walks the displacement after I steps y(l) is 
given by 

/ 

y(l)  = ~ u(i) 
i = l  

where u(i) = + 1 or - 1 if the ith step is to the right or to the left, respec- 
tively. A walk may be an uncorrelated walk, where the direction of each 
step is independent of the previous steps, or it may be a correlated walk, 
where the direction of each step depends on the past motion. In any case 
a suitable statistical quantity that characterizes a walk is the root mean 
square fluctuation F(I) about the average displacement, (s) 

F'-(l) = [ dy( l)  ] 2 -  lAy(l)] '-  

where y ( l ) = y ( l o +  1) -y ( /o )  and the bars indicate an average over all 
positions l o in the walk. 

As mentioned earlier, a scaling process y(l) satisfies the relationship 
y(l) =a a-]y(2/), where = d indicates equality in distribution and g, 2 > 0. 
Consequently, any moment of order k, p~, satisfies the relation/~(l)  = a - k  
p~(2/). The general solution to the last equation is ~ . =  lkbx(1og//log 2) 
with b = log g/log 2 and where Z is a periodic function of period one 
superimposed on the power lawJ 9~ Note that since the usual power law 
la'k(e) = Al  kb is a particular solution, depending on the scaling process, these 
oscillations may or may not present or significant. In any case if we con- 
sider the definition of F(l), we expect that if y(l) is scaling, then 

F(I) oc l u (1) 

where H = 2b. The parameter H is called the scaling exponent. A value of 
H--0.5 corresponds to a purely random walk and a value of H~=0.5 
corresponds to walks that display infinitely long-run correlations (positive 
if H > 0 . 5  and negative if H<0.5) .  It thus follows that scaling exists if 
there exists a parameter H that satisfies Eq. (1). Note that all self-affine 
processes of a given H exhibit spectra of the form 1/f  2n+ i, where f is the 
frequency.( Jo. ]~ ) 

Figure 5 shows log F(l) vs. log/  for the noncoding sequence of 
]?-cardiac myosin heavy-chain gene. This sequence is 28,438 bases long. As 
expected by the defenition of F(I), log F(I) is a monotonically increasing 
function of log/. A linear model here appears to be very convincing and a 
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Fig. 5. Log-log plot of the root mean square fluctuation F(I} of a walk generated by the 
noncoding sequence of fl-cardiac myosin heavy-chain gene as a function of the nucleotide dis- 
tancc I. The straight line of slope 0.67 is a least squares fit over the indicated range of scales. 

least squares fit in the range 1 < log l <  3 results in a line with a slope 
~0.67. Thus it was claimed that in this case F(l) oc/o.67, indicating that the 
sequence displays infinitely long-run positive correlations. Again, here the 
procedure assumes that the best fit is a straight line and thus scaling was 
assumed before it was proven. The question remains: Are the data in Fig. 5 
consistent with population of fBms having H = 0.67? 

We generated 1000 fBms with H=0 .67  and length 28,438. These 
sequences were generated by inverting spectra of the form f-(2~+,~. Even 
though other approaches to generate fBms exist, this approach is 
widely used and is considered the purest interpretation of fractional 
Brownian motion. ~'-'~ From each one of theses sequences we obtained a 
dlog F(l)/dlog I vs log l graph. The solid line in Fig. 6 shows the average 
dlogF(l)/dlogl (i.e., H) vs. log/  plot, which, as expected, displays a 
plateau at H~0.67 .  The bounds show again the 5%-95% interval of the 
frequency distr/bution of H. If a reported scaling with H =  0.67 is to be 
significant at the 95% significance level, the plot corresponding to the 
gene, dlog F(l)/dlog l vs. log l (dots), should fall within the bounds. Note 
that over the whole range of scales a least squares fit would result in a 
slope close to zero (despite the fact of an overall nonlinearity) and in a 
value of H = 0.67. But the data show no plateau at H = 0.67, as almost all 
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Fig. 6. For any random walk one expects the root man square fluctuation F(I) about the 
average of the displacement to scale with l according to a power law F(l) o: I n. The exponent 
H is the slope of a log F(I) vs. log / plot. If a scaling region clearly exists in such a plot, then 
we should be able in a dlog F(I)/dlog I vs. log l plot to observe a plateau over a significantly 
wide range of scales. The dots show d logF( I ) /d log l  vs. log/ for the entire noncoding 
sequence of fl-cardiac myosin heavy-chain gene. This figure was produced as follows. First the 
function F(l) was obtained for / = 1 ..... 250. Then the slope = [log F(l) - log F ( l -  1 ) ] [ l o g / -  
l o g ( l - I ) ]  - l  was calculated for only those l's that are powers of 1.3 [ l=integer.( l .3") ,  
n = 1, 22]. This arrangement gives a good representation of the function over the range of 
scales involved. The average of all the values corresponding to dots or a least squares fit of 
log F(l) on log/over the interval 2~ l < 29 yields a slope of around 0.67, which is the value 
that was initially claimed/5~ The solid line shows the average dlog F(l) /dlog I as a function 
of log I based on a sample of I000 fBms with H =  0.67. The shaded bounds indicate the 5%-  
95% percentiles of the frequency distribution. From this figure it is concluded that the reported 
scaling with H=0.67 (indicating long-range correlations) is not significant at the 95% con- 
fidence level (see text for details). 

p o i n t s  a re  o u t s i d e  t he  5 % - 9 5 %  i n t e r v a l  o f  t h e  c o n t r o l  m o d e l  w i t h  

H =  0.67. T h e  f igure sugges t s  t h a t  a sma l l  sca l ing  r e g i o n  exis ts  a t  a b o u t  

H = 0 . 7 3 .  T h i s  m i g h t  be  i m p o r t a n t ,  b u t  the  c o n c l u s i o n  he re  is t h a t  n o  

s ta t i s t i ca l ly  s ign i f i can t  sca l ing  o r  l o n g - r a n g e  c o r r e l a t i o n s  exis t  in  t h e  

f l - ca rd iac  m y o s i n  h e a v y - c h a i n  gene.  

I n v e r t i n g f  -~2~+ ~ s p e c t r a  is b y  n o w  r o u t i n e  a n d  t h u s  w h e n  it c o m e s  

to  t e s t i ng  for  " a l l eged"  self-affinity the  p r o c e d u r e  p r o p o s e d  a b o v e  is 

sufficient.  W h e n ,  h o w e v e r ,  we wish  to  tes t  for  a n  " a l l e g e d "  se l f -s imi lar i ty ,  

t he  t a sk  m a y  n o t  be  as  easy. In  th i s  case  a m o d e l  m i g h t  n o t  be  ava i l ab le .  

W e  m a y  n o t  even  k n o w  w h a t  t he  d a t a  l o o k  l ike ( for  e x a m p l e ,  w h e n  we t ry  

to  e s t i m a t e  d i m e n s i o n s  o f  a t t r a c t o r s  f r o m  o b s e r v a b l e s  a n d  we s e a r c h  for  
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scaling regions in data embedded in some high dimension). In this case the 
only procedure would be the "sliding-window" approach in Section 2, 
which however, has drawbacks. The difficulty with testing self-similarity 
could be overcome if we could assume that different families of random 
fractals having on the average the same dimension have the same scaling 
limits. For example, any fractal with a dimension 1.24 has the limits shown 
by the bounds in Fig. 3 provided that the resolution is the same and that 
their scales have been normalized between zero and one. Computer simula- 
tions, however, using various sets of the same dimension do not support 
this. Each family of fractals seems to have its own limits. 

4. CONCLUSIONS 

We have presented an investigation into an issue that has been 
overlooked in studies establishing fractals and chaos in natural forms and 
observables. Even though problems still exist, we have suggested some 
ways to deal with the issue. Even though testing for scaling may be in 
many cases a nontrivial problem, it is evident that we cannot keep on 
avoiding testing for scaling, as proper testing can potentially reveal impor- 
tant properties of the system in question, such as limited scaling, multiple 
scaling, or even "nonlinear" scaling. As such, it may enrich our under- 
standing of the character and processes involved in the system. If we 
assume that a scaling regime represents a rule that dictates the properties 
of an object over the corresponding scales, then a nonlinear log N(r) func- 
tion will indicate that there exist many rules for many scales and thus we 
are dealing with a far more complicated problem than a simple scaling will 
indicate. Similarly, multiple scaling (say, two distinct scaling regions) will 
suggest that two major processes are involved each one at a different range 
of scales. Whatever the case, testing for scaling is necessary, for it can 
solidly establish the existence or the absence of an alleged scaling with a 
high degree of confidence, which in turn might provide useful insights into 
how the different scales actually are related in a given physical problem. 
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